

Effect of ausforming on the bainitic transformation in medium carbon steels

Adriana Eres-Castellanos¹

Tutor: Francisco Gálvez Diaz-Rubio² Supervisors: Francisca G. Caballero¹ and Carlos Garcia-Mateo¹

1 Department of Physical Metallurgy, National Center for Metallurgical Research (CENIM-CSIC) 2 Department of Materials Science, Technical University of Madrid (UPM)

Acknowledgements:

Introduction: high strength steels (HSS)

- Recent years have seen the significant development of steels characterized by high strength (UTS>1500 MPa).
- It is expected that the HSS market value reaches 30.45 USD Billions by 2024.

He, B. B., et al. "High dislocation density-induced large ductility in deformed and partitioned steels." Science 357.6355 (2017): 1029-1032.

Sun, Jun-jie, et al. "Super-strong dislocation-structured high-carbon martensite steel." Scientific reports 7.1 (2017): 6596.

Węglowski, M. S., J. Marcisz, and B. Garbarz. "Technological Properties and Applications of High-Carbon Nanobainitic Steels." Biuletyn Instytutu Spawalnictwa w Gliwicach 62 (2018).

3

Zhao, J., et al. "Extremely high strength achievement in medium-C nanobainite steel." Scripta Materialia 152 (2018): 20-23.

He, B. B., et al. "High dislocation density-induced large ductility in deformed and partitioned steels." Science 357.6355 (2017): 1029-1032.

Sun, Jun-jie, et al. "Super-strong dislocation-structured high-carbon martensite steel." Scientific reports 7.1 (2017): 6596.

Węglowski, M. S., J. Marcisz, and B. Garbarz. "Technological Properties and Applications of High-Carbon Nanobainitic Steels." Biuletyn Instytutu Spawalnictwa w Gliwicach 62 (2018).

Zhao, J., et al. "Extremely high strength achievement in medium-C nanobainite steel." Scripta Materialia 152 (2018): 20-23.

20 nm < α plate thickness < 100 nm

Garcia-Mateo, Carlos, et al. "Analyzing the scale of the bainitic ferrite plates by XRD, SEM and TEM." *Materials Characterization* 122 (2016): 83-89. Weglowski, M. S., J. Marcisz, and B. Garbarz. "Technological Properties and Applications of High-Carbon Nanobainitic Steels." Biuletyn Instytutu Spawalnictwa w Gliwicach 62 (2018).

To obtain nanobainite, we need to transform from a stronger austenite. Typically:

To obtain nanobainite, we need to transform from a stronger austenite. Typically:

To obtain nanobainite, we need to transform from a stronger austenite. Alternatively, **ausforming**:

→Sidenor's commercial steel SCM40 (Fe-0.4C-3Si)

→Sidenor's commercial steel SCM40 (Fe-0.4C-3Si)

→ Dilatometer BÄHR 805 { fused silica push-rods (long. changes in length) { laser-interferometer (radial changes in length) thyssenkrupp Furnace Sample holder Pushrod Sample

→Sidenor's commercial steel SCM40 (Fe-0.4C-3Si)

→ Dilatometer BÄHR 805 {fused silica push-rods (long. changes in length) laser-interferometer (radial changes in length) silicon nitride punchers

Furnace Sample holder	thyssenkrupp
Puncher	

→Sidenor's commercial steel SCM40 (Fe-0.4C-3Si)

→ Dilatometer BÄHR 805 {fused silica push-rods (long. changes in length) laser-interferometer (radial changes in length) silicon nitride punchers

thyssenkrupp

→JEOL JSM-6500 FEG-SEM

→Zeiss Auriga Compact FIB-SEM

Thermal & thermomechanical treatments

Thermal & thermomechanical treatments

pure isothermal treatment at 300 °C

TRANSVERSE SECTION

LONGITUDINAL SECTION

Ausforming treatment

After having applied deformation, the signal intensity is lower

isotropic

TRANSVERSE SECTION

LONGITUDINAL SECTION

OMPRESSION DIRECTION

Ausforming treatments

After having applied deformation, the signal intensity is lower or even the signal becomes

negative

anisotropic

TRANSVERSE SECTION

OMPRESSION DIRECTION

Ausforming treatments

After having applied deformation, the signal intensity is lower or even the signal becomes

negative

anisotropic

TRANSVERSE SECTION

LONGITUDINAL SECTION

OMPRESSION DIRECTION

Results: crystallographic study - T_{def} = 400 °C + T_{iso} = 300 °C

The microstructures have being studied by EBSD, everything indicates that the

microstructures are ordered because of variant selection.

Results: Is the variant selection related to the negative longitudinal dilatometry signal? – T_{def} = 400 °C + T_{iso} = 300 °C Reconstruction **EBSD** map Application of **Microstructure** of Prior (bainitic ferrite) PTM Austenite 1,5 Radial LONGITUDINAL SECTION Relatiev change in length /% Longitudinal MPRESSION DIRECTION 1 0,5 0 2000 -0,5 $5\mu m$ -1 Time /s

Results: Is the variant selection related to the negative longitudinal dilatometry signal? $-T_{def} = 400 \text{ °C} + T_{iso} = 300 \text{ °C}$ Microstructure $\mathbb{EBSD map}_{(\text{bainitic ferrite})} \longrightarrow \mathbb{EBSD map}_{(\text{bainitic f$

Austenite

Results: Is the variant selection related to the negative
longitudinal dilatometry signal? $- T_{def} = 400 \ ^\circ C + T_{iso} = 300 \ ^\circ C$ MicrostructureImage: Colspan="3">Reconstruction
of Prior
Austenite *

Ferrite

Austenite

* T. Nyyssönen, P. Peura, V.-T. Kuokkala, Crystallography, morphology, and martensite transformation of prior austenite in intercritically annealed high-aluminum steel, Metall. Mater. Trans. A, 49 (2018) 6426-6441.

Results: Is the variant selection related to the negative longitudinal dilatometry signal? – T_{def} = 400 °C + T_{iso} = 300 °C Reconstruction **EBSD** map Application of Microstructure of Prior (bainitic ferrite) PTM Austenite RB W z P Observed Р, Martensite Austenite shape, (wrong wrong shape) structure (c) (a) (b) LATTICE -INVARIANT DEFORMATION Twin Boundary Twinned Slipped 26 Martensite Martensite

Results: Outcome for a theoretical random distribution

Results: Outcome for a theoretical random distribution

Results: Outcome obtained from the experimental EBSD data - $T_{def} = 400 \text{ }^\circ\text{C} + T_{iso} = 300 \text{ }^\circ\text{C}$

Conclusions

 \rightarrow LT Ausforming treatments lead to anisotropic microstructures, highly

ordered, whereas MT ausforming and pure isothermal treatments do

not present such an anisotropy.

- \rightarrow LT ausforming provokes that some crystallographic variants are selected during the bainitic transformation, whereas such phenomena do not occur for MT ausforming and pure isothermal treatments.
- \rightarrow The negative dilatometric signals can be explained crystallographically by applying the Phenomenological Theory of Martensite.

Publications on the topic

Materials Characterization 145 (2018) 371-380

Effect of ausforming on the anisotropy of low temperature bainitic transformation ${}^{\bigstar}$

Adriana Eres-Castellanos^a, Lucia Morales-Rivas^b, Andreas Latz^c, Francisca G. Caballero^a, Carlos Garcia-Mateo^{a,*}

^a National Center for Metallugical Research (CENIM-CSIC), Avda. Gregorio del Amo 8, Madrid 28040, Spain

^b Technische Universität Kaiserslautern (TUK), Materials Testing, Gottlieb-Daimler-Str., 67663 Kaiserslautern, Germany

^c thyssenkrupp Steel Europe AG, Technology & Innovation, Modelling and Simulation, Kaiser-Wilhelm-Straße 100, 47166 Duisburg, Germany

A. Eres-Castellanos, F.G. Caballero, C. Garcia-Mateo and L. Morales-Rivas. *Effect of ausforming on the final texture of bainitic microstructures.* (submitted)

Future work

- Study of evolution of texture during the deformation step and the isothermal holding by synchrotron (PETRA III)
- Study of the mechanisms that lead the transformations (stress/strain assisted?) by EBSD and TEM
- Study of possible deformation induced transformations during the compression step by dilatometry and SEM
- Study of the effect of ausforming on the final mechanical properties by tensile tests along longitudinal and transverse directions

Thank you all !!

Adriana Eres-Castellanos aeres@cenim.csic.es

